Benha University	Final Term Exam	
Faculty of Engineering- Shoubra	Course: Mathematics 1-B	
Eng. Mathematics \& Physics Department	Date: May 18, 2019 Dreparatory Year	Duration: 3 hours

The Exam consists of two papers \quad Answer All Questions \quad No. of questions: $4 \quad$ Total Mark: 100

Question 1

(a)State the definition of: (i)Parabola
(ii)Ellipse
(iii)Plane
(b)Describe the surfaces: $x^{2}+y^{2}+z^{2}-x=0, x^{2}+z^{2}+4 y=0, x^{2}-y^{2}-z^{2}=0$.
(c)Show that the equation $2 x y-2 x-1=0$ is hyperbola. Eliminate the xy-term and sketch its curve. Also, find its conjugate hyperbola.
(d)Determine the center, vertices and sketch the ellipse $4 x^{2}+y^{2}-8 x+2 y+1=0$.
(e)Find the distance between the two lines $x=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}+1}{2}$ and $x-1=\frac{\mathrm{y}-2}{2}=\frac{\mathrm{z}+2}{2}$ and write the equation of the plane containing them.
(f)Show that the two lines $\frac{x-4}{2}=\frac{y-2}{-2}=\frac{z-1}{1}$ and $\frac{x}{2}=\frac{y-3}{2}=\frac{z-1}{-1}$ are skew and find the short distance between them.

Question 2

(a)Prove that the line $2 x+y=4$ is a tangent to the circle $x^{2}+y^{2}+6 x-10 y+29=0$.
(b)Determine the vertex, the focus, equation of the directrix, length of latus rectum and sketch the curve of the parabola $x^{2}-2 x+4 y+9=0$.
(c)Find the value of k such that the equation $x^{2}+2 x y-3 y^{2}+4 x+k y+4=0$ represents pair of lines and then separate them. Find their point of intersection, the angle between them and the bisectors.
(d)If the point $(3,2)$ is limiting point of a system of coaxial circles where the circle
$x^{2}+y^{2}-14 x+2 y=0$ is one of this system. Find the equation of that system and the second limit point.

Question 3

(a)Find the circumference of asteroid and the area bounded by the lemniscates: $r=a \sqrt{\cos 2 \theta}$
(b)Find the integrals (i) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \cdot \ln \frac{1+x}{1-x} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
(iii) $\int_{0}^{3} \frac{d x}{(x-1)^{\frac{2}{3}}} d x$
(c)Determine the volume of revolution obtained by rotating the region bounded by $\mathrm{y}=\sqrt[3]{\mathrm{x}}$ and $y=\frac{x}{4}$ that lies in the first quadrant about the y -axis.

Model Answer

Answer of Question 1

(a)Definitions: (i) Parabola
(ii)Ellipse
(iii)Plane
(b)Sphere: $x^{2}+y^{2}+z^{2}-x=0$ is written as: $\left(x-\frac{1}{2}\right)^{2}+y^{2}+z^{2}=\frac{1}{4}$, its center $(1 / 2,0,0)$ and its radius is $1 / 2$.

Paraboloid: $x^{2}+z^{2}+4 y=0$ with vertex $(0,0,0)$, its axis is the negative y-axis.
Cone: $x^{2}-y^{2}-z^{2}=0$ with vertex $(0,0,0)$, its axis is the x -axis.
(6 Marks)
(c) From the equation $2 \mathrm{xy}-2 \mathrm{x}-1=0, \Delta=\left|\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -1\end{array}\right|=1$ and $\mathrm{h}^{2}=1>a . b=0$.

Then its hyperbola. Since $\tan 2 \theta=\frac{2 \mathrm{~h}}{\mathrm{a}-\mathrm{b}}=\frac{2}{0}$. Then $2 \theta=\frac{\pi}{2}$ and $\theta=\frac{\pi}{4}$
Then from the substitution $x=X \cos \frac{\pi}{4}-Y \sin \frac{\pi}{4} \quad$ and $\quad y=X \sin \frac{\pi}{4}+Y \cos \frac{\pi}{4}$
Then $\quad x=\frac{X-Y}{\sqrt{2}} \quad$ and $\quad y=\frac{X+Y}{\sqrt{2}}$
Then $\frac{X-Y}{\sqrt{2}} \cdot \frac{X+Y}{\sqrt{2}}-2 \frac{X-Y}{\sqrt{2}}-1=0 \quad$ Or $\quad\left(X-\frac{1}{\sqrt{2}}\right)^{2}-\left(Y-\frac{1}{\sqrt{2}}\right)^{2}=1$.
It is vertical with center $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\mathrm{a}=\mathrm{b}=1$.
The asymptotic lines is given by: $2 \mathrm{xy}-2 \mathrm{x}+\mathrm{C}=0$ and $\Delta=\left|\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & \mathrm{c}\end{array}\right|=-\mathrm{C}=0$
Then, the asymptotic lines is given by: $2 \mathrm{xy}-2 \mathrm{x}=0$ and the conjugate hyperbola is

$$
2 x y-2 x-1=0
$$

(6 Marks)
(d)The ellipse $4 x^{2}+y^{2}-8 x+2 y+1=0$ is written as $4(x-1)^{2}+(y+1)^{2}=4$

It is vertical with center $(1,-1), \mathrm{a}=1, \mathrm{~b}=2$.
(e)We see that $\vec{u}=\overrightarrow{\mathrm{v}}=\mathrm{i}+2 \mathrm{j}+2 \mathrm{k}$.

Then, the two lines $x=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}+1}{2}$ and $x-1=\frac{\mathrm{y}-2}{2}=\frac{\mathrm{z}+2}{2}$ are parallels.
Since $P_{1}=(0,1,-1), P_{2}=(1,2,-2)$. Then $\overrightarrow{P_{1} P_{2}}=i+j-k$
Then $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}} \times \overrightarrow{\mathrm{u}}=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 1 & 1 & -1 \\ 1 & 2 & 2\end{array}\right|=4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}=\overrightarrow{\mathrm{N}}$
Then the plane is: $4 \mathrm{x}-3(\mathrm{y}-1)+\mathrm{z}+1=0 \quad$ Or $\quad 4 \mathrm{x}-3 \mathrm{y}+\mathrm{z}+4=0$
The distance between the lines is: $D=\frac{\left|\overrightarrow{P_{1} P_{2}} \times \vec{u}\right|}{|\vec{u}|}=\frac{\sqrt{26}}{3}$
(4 Marks)
(f) From the two lines $\frac{x-4}{2}=\frac{y-2}{-2}=\frac{z-1}{1}$ and $\frac{x}{2}=\frac{y-3}{2}=\frac{z-1}{-1}$

We see that $\vec{u}=2 \mathrm{i}-2 \mathrm{j}+\mathrm{k}, \quad \overrightarrow{\mathrm{v}}=2 \mathrm{i}+2 \mathrm{j}-\mathrm{k}$ and $\mathrm{P}_{1}=(4,2,1), \mathrm{P}_{2}=(0,3,1)$.
Then $\overrightarrow{P_{1} P_{2}}=-4 i+j+0 k$
Then $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}} \times \overrightarrow{\mathrm{u}}=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ -4 & 1 & 0 \\ 2 & -2 & 1\end{array}\right|=i+4 j+6 k$
Then $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}} \times \overrightarrow{\mathrm{v}}=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ -4 & 1 & 0 \\ 2 & 2 & -1\end{array}\right|=-\mathrm{i}-4 \mathrm{j}+10 \mathrm{k}$
Then the two lines are skew.
Since $\vec{u} \times \vec{v}=\left|\begin{array}{ccc}i & j & k \\ 2 & -2 & 1 \\ 2 & 2 & -1\end{array}\right|=0 i+4 j+8 k \quad$ and $\quad \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})=0+4+0=4$
Then the short distance is: $L=\frac{\overrightarrow{P_{1} \mathrm{P}_{2}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})}{|\overrightarrow{\mathrm{u}} \times \vec{v}|}=\frac{4}{\sqrt{80}}=\frac{1}{\sqrt{5}}$
To obtain the end points M, N of the short distance, we write the lines in parametric form:
The first: $\quad x=2 t+4, y=-2 t+2, z=t+1, \quad t$ in R
The second : $x=2 r, \quad y=2 r+3, \quad z=-r+1, r$ in R
Then $\overrightarrow{M N}=(2 r-2 t-4) i+(2 r+2 t+1) j+(-r-t) k$
Since $\overrightarrow{M N} . \vec{u}=2(2 r-2 t-4)-2(2 r+2 t+1)+(-r-t)=0, \quad-r-9 t-10=0$

$$
\overrightarrow{\mathrm{MN}} . \overrightarrow{\mathrm{v}}=2(2 \mathrm{r}-2 \mathrm{t}-4)+2(2 \mathrm{r}+2 \mathrm{t}+1)-(-\mathrm{r}-\mathrm{t})=0, \quad 9 \mathrm{r}+\mathrm{t}-6=0
$$

Then by solving the equations: $9 t+r=-10, t+9 r=6$. We get $t=-\frac{6}{5}, r=\frac{4}{5}$.
Then the two points are $M\left(\frac{8}{5}, \frac{22}{5},-\frac{1}{5}\right), N\left(\frac{8}{5}, \frac{23}{5}, \frac{1}{5}\right)$.
The distance between them is $\sqrt{\frac{5}{25}}=\frac{1}{\sqrt{5}}$

Final Exam and ILOs

Course Title: Mathematics 1-B
Code: EMP 021

Questions	ILOs		
	Knowledge and Understanding	Intellectual Skills	Professional and Practical Skills
	a. 1	b. 1	c. 1
Q1	\checkmark	\checkmark	
Q2	\checkmark	\checkmark	\checkmark
Q3	\checkmark		\checkmark
Q4	\checkmark	\checkmark	

Dr. Mohamed Eid

