Benha University			Final Term Exa	ım		
Faculty of Engineering- Shoubra	Course: Mathematics 1 – B					
Eng. Mathematics & Physics Department		S AND	Date: May 18	3, 2019		
reparatory Year Duration: 3 hours						
The Exam consists of two papers Answer All Questions No. of questions: 4 Total Mark: 100						
Question 1					-	
(a)State the definition of : (i)Parabola	a (ii)Ell	lipse	(iii)Pla	ne	6	
(b)Describe the surfaces: $x^2 + y^2 + z^2 - x = 0$, $x^2 + z^2 + 4y = 0$, $x^2 - y^2 - z^2 = 0$.						
(c)Show that the equation $2xy - 2x - 1 = 0$ is hyperbola. Eliminate the xy-term and						
sketch its curve. Also, find its conjugate hyperbola.						
(d)Determine the center, vertices and sketch the ellipse $4x^2 + y^2 - 8x + 2y + 1 = 0$.						
(e)Find the distance between the two lines $x = \frac{y-1}{2} = \frac{z+1}{2}$ and $x - 1 = \frac{y-2}{2} = \frac{z+2}{2}$					4	
and write the equation of the plane containing them.						
(f)Show that the two lines $\frac{x-4}{2} = \frac{y-2}{-2}$	(f)Show that the two lines $\frac{x-4}{2} = \frac{y-2}{-2} = \frac{z-1}{1}$ and $\frac{x}{2} = \frac{y-3}{2} = \frac{z-1}{1}$ are skew and find the					
short distance between them.	1 2	-	-			
Ouestion 2						
(a)Prove that the line $2x + y = 4$ is a tangent to the circle $x^2 + y^2 + 6x - 10y + 29 = 0$.						
(b)Determine the vertex, the focus, equation of the directrix, length of latus rectum and						
sketch the curve of the parabola $x^2 - 2x + 4y + 9 = 0$.					5	
(c)Find the value of k such that the equation $x^2 + 2xy - 3y^2 + 4x + ky + 4 = 0$						
represents pair of lines and then separate them. Find their point of intersection, the						
angle between them and the bisectors.						
(d)If the point (3, 2) is limiting point of a system of coaxial circles where the circle						
$x^{2} + y^{2} - 14x + 2y = 0$ is one of this system. Find the equation of that system and						
the second limit point.						
Question 3						
$\underbrace{\text{Outsuon 5}}_{\text{C}}$						
(a) Find the circumference of asteroid and the area bounded by the lemniscates: $m = a \sqrt{200, 20}$						
$1 \qquad \pi \qquad 2$						
(b)Find the integrals (i) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \cdot \ln \frac{1+1}{1-1}$	$\frac{x}{x}$ dx (ii) $\int_0^{\overline{2}} \frac{1}{\sqrt{\sin x}}$	√sin x x + √cos	$\frac{1}{x}$ dx (iii) \int_0^3	$\frac{dx}{(x-1)^{\frac{2}{3}}}dx$		
(c)Determine the volume of revolution obtained by rotating the region bounded by						
$y = \sqrt[3]{x}$ and $y = \frac{x}{1}$ that lies in the first quadrant about the y-axis.						
انظر السبة إلى الرابع بالورقة الثانبة						
Good Luck : Dr. Mohamed Eid. Dr. Khaled Elnaaar Dr. Reda Abd Elkader						
good Such i Shonanda Sua,	211 I Martin Dillag	,	211 2000 720	a Dillandi		

<u>Model Answer</u>

Answer of Question 1

(a)Definitions: (i) Parabola (ii)Ellipse (iii)Plane ----- (6 Marks) (b)Sphere: $x^2 + y^2 + z^2 - x = 0$ is written as: $(x - \frac{1}{2})^2 + y^2 + z^2 = \frac{1}{4}$, its center (1/2, 0,0) and its radius is 1/2. Paraboloid: $x^2 + z^2 + 4y = 0$ with vertex (0, 0, 0), its axis is the negative y-axis. Cone: $x^2 - y^2 - z^2 = 0$ with vertex (0, 0, 0), its axis is the x-axis. ---------- (6 Marks) (c) From the equation 2xy - 2x - 1 = 0, $\Delta = \begin{vmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -1 \end{vmatrix} = 1$ and $h^2 = 1 > a.b = 0$. Then its hyperbola. Since $\tan 2\theta = \frac{2h}{a-b} = \frac{2}{0}$. Then $2\theta = \frac{\pi}{2}$ and $\theta = \frac{\pi}{4}$ Then from the substitution $x = X \cos{\frac{\pi}{4}} - Y \sin{\frac{\pi}{4}}$ and $y = X \sin{\frac{\pi}{4}} + Y \cos{\frac{\pi}{4}}$ Then $x = \frac{X-Y}{\sqrt{2}}$ and $y = \frac{X+Y}{\sqrt{2}}$ Then $\frac{X-Y}{\sqrt{2}} \cdot \frac{X+Y}{\sqrt{2}} - 2\frac{X-Y}{\sqrt{2}} - 1 = 0$ Or $(X - \frac{1}{\sqrt{2}})^2 - (Y - \frac{1}{\sqrt{2}})^2 = 1$. It is vertical with center $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and a = b = 1. The asymptotic lines is given by: 2xy - 2x + C = 0 and $\Delta = \begin{vmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{vmatrix} = -C = 0$ Then, the asymptotic lines is given by: 2xy - 2x = 0 and the conjugate hyperbola is 2xy - 2x - 1 = 0----- (6 Marks) (d)The ellipse $4x^2 + y^2 - 8x + 2y + 1 = 0$ is written as $4(x - 1)^2 + (y + 1)^2 = 4$ It is vertical with center (1, -1), a = 1, b = 2. ------ (4 Marks)

(e)We see that $\vec{u} = \vec{v} = i + 2j + 2k$. Then, the two lines $x = \frac{y-1}{2} = \frac{z+1}{2}$ and $x - 1 = \frac{y-2}{2} = \frac{z+2}{2}$ are parallels. Since $P_1 = (0, 1, -1)$, $P_2 = (1, 2, -2)$. Then $\overrightarrow{P_1P_2} = i + j - k$ Then $\overrightarrow{P_1P_2} \times \overrightarrow{u} = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 1 & 2 & 2 \end{vmatrix} = 4i - 3j + k = \overrightarrow{N}$ Then the plane is : 4x - 3(y - 1) + z + 1 = 0 Or 4x - 3y + z + 4 = 0The distance between the lines is: D = $\frac{|\overline{P_1P_2} \times \vec{u}|}{|\overline{u}|} = \frac{\sqrt{26}}{3}$ ----- (4 Marks) (f)From the two lines $\frac{x-4}{2} = \frac{y-2}{-2} = \frac{z-1}{1}$ and $\frac{x}{2} = \frac{y-3}{2} = \frac{z-1}{1}$ We see that $\vec{u} = 2i - 2j + k$, $\vec{v} = 2i + 2j - k$ and $P_1 = (4, 2, 1)$, $P_2 = (0, 3, 1)$. Then $\overrightarrow{P_1P_2} = -4i + j + 0k$ Then $\overrightarrow{P_1P_2} \times \overrightarrow{u} = \begin{vmatrix} i & j & k \\ -4 & 1 & 0 \\ 2 & -2 & 1 \end{vmatrix} = i + 4j + 6k$ Then $\overrightarrow{P_1P_2} \times \overrightarrow{v} = \begin{vmatrix} i & j & k \\ -4 & 1 & 0 \\ 2 & 2 & -1 \end{vmatrix} = -i - 4j + 10k$ Then the two lines are skew. Since $\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 2 & -2 & 1 \\ 2 & 2 & -1 \end{vmatrix} = 0i + 4j + 8k \text{ and } \overrightarrow{P_1 P_2} \cdot (\vec{u} \times \vec{v}) = 0 + 4 + 0 = 4$ Then the short distance is : L = $\frac{P_1 P_2 \cdot (\vec{u} \times \vec{v})}{|\vec{u} \times \vec{v}|} = \frac{4}{\sqrt{80}} = \frac{1}{\sqrt{5}}$ To obtain the end points M, N of the short distance, we write the lines in parametric form: x = 2t + 4, y = -2t + 2, z = t + 1, t in R The first : The second : x = 2r, y = 2r + 3, z = -r + 1, r in R Then $\overrightarrow{MN} = (2r - 2t - 4)i + (2r + 2t + 1)j + (-r - t)k$ Since $\overrightarrow{MN} \cdot \overrightarrow{u} = 2(2r - 2t - 4) - 2(2r + 2t + 1) + (-r - t) = 0$, -r - 9t - 10 = 0 $\overrightarrow{\text{MN}}$. $\vec{v} = 2(2r - 2t - 4) + 2(2r + 2t + 1) - (-r - t) = 0$, 9r + t - 6 = 0Then by solving the equations: 9t + r = -10, t + 9r = 6. We get $t = -\frac{6}{5}$, $r = \frac{4}{5}$. Then the two points are $M\left(\frac{8}{5}, \frac{22}{5}, -\frac{1}{5}\right)$, $N\left(\frac{8}{5}, \frac{23}{5}, \frac{1}{5}\right)$. The distance between them is $\sqrt{\frac{5}{25}} = \frac{1}{\sqrt{5}}$ ----- (4 Marks)

Dr. Mohamed Eid

Final Exam and ILOs

Course Title: Mathematics 1-B

Code: EMP 021

	ILOs					
Questions	Knowledge and Understanding	Intellectual Skills	Professional and Practical Skills			
	a.1	b.1	c.1			
Q1						
Q2						
Q3						
Q4						

Dr. Mohamed Eid